

Oberlander Prize Forum IV: Soak it Up

The Cultural Landscape Foundation 4–6 December 2025

Abstracts

THURSDAY, DECEMBER 4

Keynote Address

Lauren Bon

Environmental Artist and Activist, Director, Metabolic Studio

The Cyborg Watershed of the American West

For six million years, the Colorado River carved the Grand Canyon on its meander from the Rockies to Baja California. A century ago, in 1922, the river was divided among seven states in a compact that still governs it today. As a result, the Colorado no longer reaches the sea—its waters consumed before crossing the border.

The American West was built on the mirage that its booming cities—Los Angeles, Phoenix, Las Vegas—would never go thirsty. Today, water is pumped through engineered veins across mountains and deserts, traveling uphill so millions can drink from a river they never see. Dams disrupt natural flows, sustaining life in climate hot zones where air conditioners hum year-round.

As an artist based in Los Angeles, I see this system as both technological triumph and ecological rupture. I call it the Cyborg Watershed of the Intermountain West—part earth, part machine, wholly a construct of human desire. It is a system that defies not just physics, but logic.

In this talk, I will also trace what I call a triangle of transmission that Metabolic Studio has engaged with for two decades: beginning with Owens Lake, long ago drained to feed Los Angeles; moving to the LA River, where I am redirecting a small part of the low-flow channel back into the city; and reaching to the Salton Sea, itself an accidental body formed from a break in the Colorado River aqueduct. Together, these sites reveal the contradictions—and possibilities—of water in the desert West.

FRIDAY, DECEMBER 5

Setting the Stage: Southern California Palimpsest: A Landscape of Ecological Abundance, Cultural Complexity and Climatological Extremes

Alison B. Hirsch, PhD, FAAR, ASLA

University of Southern California, School of Architecture

Southern California is a landscape of ecological abundance, cultural complexity, and climatological extremes. Prior to Spanish arrival, what became known as the Los Angeles Basin and the broader mountains, forests, deserts, coasts, and wetlands were inhabited and stewarded by Native peoples with

ancestral knowledge of the dynamic biophysical systems that make up the richness of the region. Beginning with the arrival of the Spanish, as the land and people of California were colonized, so too were its waters—resulting in a hydrological system that is now among the most highly engineered on the planet. Over the 19th and 20th centuries, increasingly complex hydraulic infrastructures—dams, aqueducts, and concrete channels—enabled rapid urban growth, often privileging profit and private enterprise over ecological health and equity. The Los Angeles Aqueduct, completed in 1913, and the Colorado River Aqueduct, completed in 1941, redefined the metropolis, severing watersheds and fueling speculative expansion while marginalizing vulnerable communities.

Parallel to this exploitation, visionaries, including Frederick Law Olmsted, Sr. and Olmsted Brothers, brought attention to natural and cultural resources that should not be lost to human development. The Olmsted-Bartholomew Plan of 1930 for Los Angeles proposed a resilient regional green infrastructure, linking hydrology, open space, and urban growth. Its shelving left the city fragmented, paved over, and hydrologically impaired.

Today, climate change exacerbates the region's historic vulnerabilities—drought, floods, wildfire, and inequitable risk exposure—demanding integrated, multi-benefit water planning. Recent efforts, from the Klamath River dam removal in Northern California to LA County's Measure W, signal California's shift toward watershed-based, restorative approaches. Landscape architects, with their systems thinking and cross-scalar design expertise, are central to these transformations. This gathering of practitioners, historians, engineers, and policymakers examines inherited conditions and emerging projects, demonstrating the profession's critical role in addressing urban water challenges and shaping equitable, climate-resilient hydrological futures.

William Deverell

Co-Director, Huntington-USC Institute on California and the West

Rivers of Memory and Fate

Southern California's explosive growth over the last century and a half is inextricably tied to hydrology, water engineering, gigantic public works, and the ever-changing interface between aridity and metropolitan demands. Through context and history, these prelude remarks examine the ways in which greater Los Angeles hitched growth to the acquisition of water is dramatic and complex, specific to time, place, and circumstance. But these events—the building of aqueducts, dams, concrete channels, and vast delivery systems—must also be considered together in order to understand historical patterns. Understanding those patterns (of hubris interwoven with accomplishment) will help guide planners and policymakers making critical decisions about water management going forward. These scene-setting remarks will take us from the mid-19th century forward, from the banks of the tiny Los Angeles River to the headwaters of the Owens River in the Sierra Nevada and on to the Colorado River watershed. This exploration of how planners, engineers, politicians, boosters, and the public worked together and crosswise over the future of water will help ground the day's discussions in historical perspective.

Alexander Robinson, ASLA, AAR

Associate Professor, University of Southern California School of Architecture, Landscape Architecture + Urbanism Program, Inclusive Infrastructure Design Lab

Beyond Control: Seeking Agency in Southern California's Water Infrastructure

The defining landscapes of Los Angeles' most iconic water infrastructure—Owens Lake and the Los Angeles River—are the products of accidents, crises, and the willfulness of water itself. Each reveal how critical infrastructure can be reordered through complex entanglements with water and landscape. Yet even when acknowledged as hybrid terrains—part landscape, part utility—they remain notoriously difficult to design as such. Their apparent affinity for landscape architecture masks a deeper reality: they function more like roads than parks, engineered to perform, constrained by regulation, and only incidentally treated as "landscape."

Owens Lake, once eradicated by the Los Angeles Aqueduct, now thrives as an engineered dust-control system whose ecological performance dictates water allocation. It has become an advanced regulatory landscape—where environmental, aesthetic, and economic values are continually renegotiated among multiple specialties. The LA River, by contrast, has resisted transformation: a smooth, "featureless" flood-control channel that, through protest and neglect, has evolved into an accidental greenway and tentatively embraced by Angelinos. In both, moments of rupture—broken pipes, unexpected flooding, shifts in law—have revealed water's civic and landscape power and its levers, opening space for design to influence its trajectory.

Looking ahead, the future water infrastructure lies in deepening and shifting its entanglement with the diverse forces that exerts agency over it—regulatory bodies, flood managers, engineers, ecologists, community groups, artists, and the landscape itself. The next phase of implementation must treat them as co-authors in on-going stewardship. By hybridizing engineering, landscape architecture, environmental monitoring, and civic engagement in ways that openly negotiate and connect these practices we can embraces their agency while shaping an infrastructure with a landscape that is adaptive, equitable, and inseparable from the complex systems that sustain it.

Learning from Los Angeles (Panel 1, Part I)

Gerdo Aquino, FASLA, PLA Co-CEO, SWA

The (Kangaroo) Rat Race: Balancing Competing Water Needs for Southern California's Future

In 1920, there were 1.6 million residents in Southern California. Today, there are over 25 million, and the region's water supply system—a complex network of reservoirs, pipelines, and aqueducts - is increasingly strained, burdened by droughts and a changing climate. Now more than ever, communities throughout Southern California are concerned about water security. The question looms: will, at some point, the tap run dry?

At the same time, California's freshwater supply is also critical to the state's diverse and vital ecosystems. From deltas to desert washes, water underlies California's unique biodiversity and is crucial to the survival of numerous endangered and threatened species.

How can we negotiate between these competing demands—water for humans and water for habitat—in time of increasing scarcity? What role does landscape architecture play?

To answer this question, this presentation will take you to the edge of LA's sprawling metropolis, where suburban development meets the mountain front, where wildfire risk is highest, and where the future of California's relationship with water is being written. Here, on a sloping 1,600-acre property in San

Bernardino County, once slated for 3,600 new homes, a municipal water district is now planning a series of reservoirs to bolster regional water supply. But at what cost to natural habitats? Is there a way to not only limit habitat destruction but enhance degraded ecosystems—while also improving water security for local residents?

It is a story that spans miles, from mountain streams to the sprawling valley below. At its heart, however, is an animal less than 4-inches long: the San Bernardino Kangaroo Rat—a tiny protagonist in the evolving relationship between humans and wildlife in water-scarce Southern California.

Jessica M. Henson, RLA, ASLA, AICP Partner, OLIN

Wet and Dry: LA 2325

Too much or too little rain defines so much of the story of Los Angeles. If humans had the power to time precipitation, turning flash floods into gentle rainfall throughout the year, LA wouldn't need massive flood infrastructure or aqueducts. Mudslides wouldn't wreak havoc on people and property, and wildfires would have much less dry tinder to burn. For millennia humans have met this challenge of abundance or scarcity with different methods, ranging from Indigenous Tribes coordinating settlement with the seasonal changes of the LA River to massive channelization projects, debris basins, and civil works that surpassed the masonry mass of the pyramids.

It is easy to look back over the past 150 years of LA development and critique planners, engineers, developers, and architects for misguided plans that disrupted ecology, displaced and redlined communities, and ignored the precious value of our local groundwater and river. It is more difficult to create implementable strategies that balance social, ecological, and hydrological realities of a modern metropolis within current political, and economic realities.

This presentation will focus on the challenges of balancing water management with public space and environmental justice in landscape architectural projects for the future benefit of the city during a century of rapidly accelerating climate change and biodiversity loss. In LA, more than 50% of communities are classified as disadvantaged, and approximately three-quarters of a million people lack access to a park within a ten-minute walk from their home. These issues need action, but timelines to implement projects can span years and decades. Many communities are frustrated about dreams that are unfulfilled similar to the Olmsted-Bartholomew Plan of 1930 for the LA Region that was an unfulfilled dream, largely due to governance issues at the time. Looking back 100 years, it is often wished that the 71,000 acres of park space proposed in the plan was part of our park system today.

One hundred years from now, what will future generations wish had been completed now? On the flip side, what will future generations recognize as harm in the way redlining or displacement for freeway construction that are known today? As the climate becomes hotter and drier with less frequent, more intense rains, what can we expect for the next century of this iconic global city?

Learning from Los Angeles (Panel 1, Part II)

Julia Prince, RLA, ASLA, AIA Associate, Design Workshop

Performance Based Practice

The City of Los Angeles is home to an extraordinary number of endemic species that exist nowhere else. It is situated within the California Floristic Province, one of 36 global biodiversity hotspots. California's biodiversity faces mounting threats from climate change, urban expansion, and other pressures, which could drive the loss of up to two-thirds of its endemic species by 2100.

Protecting Los Angeles's exceptional ecological richness begins with protecting its water. The sustenance of the city's biodiversity and native ecosystems depends on the conservation of its limited water resources and the maintenance of historic hydrological patterns.

Water scarcity has always defined life in California, just as it has in the Rocky Mountain West where Design Workshop was founded. Central to the firm's ethos is resource stewardship and the understanding of water conservation as an essential element of landscape design.

Today, with a national practice spanning climates and jurisdictions from East to West, Design Workshop interacts with water in a spectrum of different ways. The firm specializes in place-based designs that uphold function and beauty. Instead of reinforcing singular understandings of what institutional or public spaces should look and feel like, it envisions landscapes that respond authentically to local conditions, foremost the availability of water. Its designs seek to align perceptions of what landscape should be with what resources are naturally present.

But what does resource conservation mean in a place where native landscapes are so profoundly modified by development? LA is highly urbanized, with a complex history of settlement, inhabited by species and cultures from across the planet. How do we honor historic ecology while making space for the residents of today? When turning back the clock is not a productive goal, what does landscape restoration look like?

Kush Parekh, PLA, ASLA, Principal & Matt Romero, ASLA, Associate Principal Studio-MLA

Designing with Water: Community Infrastructure to Iconic Reuse

Los Angeles is both a proving ground and a paradox when it comes to water. For more than a century, the city has relied on massive infrastructure to import and control its supply, yet the future depends on learning to live with water in place. From neighborhood parks to global sports venues, new models of water infrastructure are emerging that recast public space as part of a regional system of resilience.

At Urban Orchard Park in South Gate, along the Los Angeles River, stormwater capture and treatment funded by Measure W's Safe, Clean Water Program becomes a catalyst for equity as well as compliance. What began as a mandate to meet Clean Water Act requirements is now shaping multi-benefit infrastructure that restores habitat, expands park access, and strengthens community health.

At SoFi Stadium's Lake Park, a 6-acre lake filled with reclaimed water from the West Basin also captures on-site stormwater. This dual system, the first of its kind in Los Angeles, uses an innovative filtration design that meets the standards of Measure W projects even outside the program. More than a reservoir, the lake has become civic landmark and habitat, showing how iconic destinations can align with regional water goals.

Together, these projects demonstrate how the scales of Los Angeles' water future are converging. Whether in small neighborhoods or world-renowned venues, water-first design is beginning to blur the line between compliance and imagination, infrastructure and landscape. The question now is how quickly this vision can be expanded, and how future generations will judge the choices we make today.

Global Strategies and Perspectives (Panel 2)

Mario Schjetnan, FASLA

Managing Director, Grupo de Diseño Urbano

Valuable Case Studies in Water Management: Flood Control, Infiltration and Water Quality:

- 1. Mexicali Fluye, Mexicali / Calexico
- 2. Mexico City, Tecnoparque

The presentation highlights two important projects completed by our office, GDU/Mario Schjetnan. The first case study is the "Mexicali Fluye" Master Plan. Sponsored by the Tucson-based nonprofit Sonoran Institute with funding from the State of California. This project focuses on a 2.98-mile stretch of the Northern Collector Drain (DCN), a river south of Mexicali, Baja California, created largely by irrigation-canal water. The DCN flows northward, joining the Rio Nuevo before crossing into Calexico, California, creating a unique binational ecosystem and social corridor, presently with low water quality.

The "Mexicali Fluye" project aims to enhance water quality using natural, sustainable treatment methods while simultaneously creating a linear park that provides accessible open areas for local communities, offering ecological restoration alongside recreational and sports facilities.

By providing public spaces, encouraging safe use, and fostering environmental recovery through passive water purification techniques, such as constructed wetlands, the project sets criteria for future integration between residents and the revitalized natural spaces of the DCN-Río Nuevo.

The interest and validity of the project lies in the similar complexities, constraints, and opportunities at the natural, geographic, social, hydraulic, and political interrelationships between México and the U.S. along our roughly 1952—mile, shared border.

The second project is the *Tecnoparque* development in Mexico City's Azcapotzalco borough, a 13-hectare post-industrial site envisioned as an office hub for data and call centers. GDU/MS has served on this project since 2004, contributing master planning, water infrastructure design, landscape architecture, and the design of recreational and communal areas.

Mexico City authorities mandated that no new municipal water flow could be added beyond the preexisting supply, and no stormwater or drainage flows could enter the overburdened municipal system.

This constraint led to a pioneering zero-discharge campus design. Our team developed a dual rainwater system: collection into cisterns and infiltration wells extending 55 meters down to geological absorption strata. Treated sewage water stored in cisterns is channeled to open-air reflecting pools, which irrigate green spaces and promote evapotranspiration, thus supporting local microclimate regulation. This system recharges Mexico City's depleted aquifer and conserves water through effective reuse. Building on Tecnoparque's success, we recently founded the "Alliance for Water Abundance in Mexico City" a

nonprofit partnership with Universidad Autónoma Metropolitana and private sector collaborators aimed at scaling this model to other urban districts facing similar water challenges. The objective is to restore hydraulic balance, reduce underground water overextraction, and mitigate flash flooding across Mexico City.

Kongjian Yu, FASLA

Professor, Peking University; President, Turenscape

Designing the Sponge Planet: Monsoon-Inspired Modular Solutions for Climate Resilience

Climate change mitigation is often framed around carbon emissions, yet the degradation of the Earth's hydrological and surface systems plays an equally critical role. The author's Sponge City theory reframes climate action as a landscape and territorial design challenge, emphasizing the restoration of soil moisture, evapotranspiration, and low-cloud cover to stabilize hydrological cycles and mitigate heat extremes. Extending this vision to the "Sponge Planet," the author calls for rehydrating terrestrial surfaces through decentralized, nature-based solutions. This framework draws on the agricultural ingenuity of monsoon cultures—such as terraced paddies, pond-dike systems, and seasonal flood-adapted planting—which historically integrated human productivity with ecological resilience.

To translate these traditions into contemporary practice, the author advances a research-to-application pathway: *ancient ecological wisdom>model extraction>enhanced ecological design>post-occupancy evaluation>modular technology>modern ecological restoration.* Modularization enables low-cost, replicable interventions that optimize ecosystem services—including flood regulation, water purification, biodiversity enhancement, and cultural value—while remaining adaptable to diverse climates.

Multiple cases illustrate this approach: Benjakitti Forest Park in Bangkok—a 52.7-hectare transformation of a former tobacco factory into a porous wetland—forest mosaic; Nanchang Fish Tail Park—converting a flood-prone urban wasteland into a multifunctional floating forest; and Sanya Dong'an Wetland—turning a flood-prone urban backyard into the ecological front yard of the city's new CBD. These projects capture and store stormwater, restore degraded waters, expand habitat networks, and foster community engagement, often under severe budget and time constraints.

The author's modular, monsoon-informed Sponge City methodology offers a transferable blueprint for Sponge Planet restoration—bridging hydrological resilience, cultural heritage, and ecological engineering. It positions landscape architecture not only as climate infrastructure, but also as a catalyst for cultural continuity and planetary rehydration.

Adriaan Geuze, FASLA, IR, RLA, OALA

Founding Partner, Principal, West 8

Hidden Rivers

Landscape infrastructure, engineering and water management are deeply embedded in the practice of shaping land. West 8 departs from this culture of constructed land and nature-born solutions and, when approaching the field of landscape architecture, views the discipline as place-making and land-shaping intertwined as engineering ecosystems.

In international contexts, we equip this unique perspective and toolbox when we reimagine the possibilities for envisioned landscapes and public space. Our multidisciplinary studio work with a systemic approach and, as we widen the lens, the larger context becomes the foundation for the design process. We learn from the site and give these layers—both anthropological and environmental—gravity and agency. Within the studio, we use the metaphor—the hidden rivers. Only by diving into the history and heritage, the formal and informal economies, and the users and uses, are we able to redefine the possibilities. We create spaces that invite, express identity and further the discussion.

Within the presentation, West 8 founder, Adriaan Geuze FASLA, will speak to examples of unique conditions, strategies and perspectives. These include national objectives for water management (e.g., *The Room for the River Project*) and how these initiatives apply within an individual context (*Noordwaard Polder, Biesbosch National Park*). In addition, recently completed projects (e.g., *Grand Egyptian Museum, Cairo*) will be showcased as precedents of international studio work. Lastly, discussing how these principles translate to a Californian context, where designing spaces for encounter and exchange and enhancing natural ecology coalesce to create a 21st-century workplace environment for innovation: *Google Campus, California*.

Maura Rockcastle, ASLA, PLA

Principal and Co-founder, TEN x TEN

Mississippi Stories

Stewardship in the context of the Mississippi River is a layered and complicated idea. Human, non-human, cultural, geologic, floodplain, wetland, backwater habitats, and riverine systems depend on relationships and reciprocity to thrive. In the Twin Cities, there is a groundswell of awareness and advocacy work fostering/nurturing those critical relationships between these human and environmental systems across policy, design, and community forums. How can future work in the public realm of the Mississippi River honor Indigenous legacy, build resilience, and better understand future vulnerabilities?

This question will be explored through the lens of two projects along the Mississippi River in the Twin Cities. The first, the Mississippi River Learning Center (MRLC), is a visionary, mixed-use river-focused space with year-round environmental, cultural, and historical learning along Saint Paul's stretch of the Mississippi River. The project builds on the city's long-standing effort to integrate the river into community life, reinforcing its role as the River Capital of the world. Environmental sustainability and climate change realities, alongside education opportunities, are embedded in the site restoration and design approach.

The second, Indian Mounds or Wiçahapi, is a cemetery built by ancestors of living people. The place has deep significance to the Upper Sioux Community, Lower Sioux Community, Shakopee Mdewakanton Sioux Community, Prairie Island Indian Community, Ho-Chunk Nation of Wisconsin, Iowa Tribe of Kansas and Nebraska, Sisseton-Wahpeton Oyate, and other descendants of those who are buried here. It is home to the only known remaining burial mounds within the Minneapolis-Saint Paul urban core. The Cultural Landscape Study, Messaging Plan, and site interpretation present an inspirational and holistic guide to gradually replace recreational features and activities with preservation of the burial ground, expansion of native plants, messaging acknowledging the sacred site, and removal of impacting elements. The sacredness of this place is communicated through a variety of changes to the landscape and sharing of messages that aim to build respect and restore dignity.

Situated within the traditional and ancestral homeland of the Dakota People, these sites are of significant

cultural importance and considered sacred. The cultural, spiritual, and economic practices of the Dakota and other Indigenous peoples are woven into these landscapes in unique ways. These project sites, design, and management approaches embody the complex historic and contemporary context in which we work.

SATURDAY, DECEMBER 6

Mobile Sessions

Reimagining Sepulveda Basin

Led by **Jessica M. Henson**, Partner, OLIN; **Deborah Weintraub**, Chief Deputy Engineer, City of Los Angeles, Bureau of Engineering; **Sarah Swanseen**, Project Coordinator, OLIN; **Mark Hanna**, Senior Vice President, Geosyntec, and **Chris Torres**, Founder and Principal, Agency Artifact

The Sepulveda Basin is the largest single open space along the 51-mile LA River. The City of LA began leasing lands in the basin from the federal government in the 1950s for recreation, and, today, leases more than 1,500 acres of land for public recreation, habitat reserves, and critical infrastructure. While the basin's initial development was part of the LA River flood management system, today the 2,000-acre basin is also a treasured habitat and open space in the City of LA. The Sepulveda Basin Vision Plan, led by LA BOE, OLIN, Geosyntec, and Agency Artifact is the first City of LA comprehensive plan for the Sepulveda Basin.

The ambitions of the Vision Plan are clear. The plan proposes to rethink the basin with natural systems thinking and traditional ecological knowledge, naturalize the LA River and tributaries in the basin to improve ecosystem function, biodiversity, and floodplain connectivity while capturing, infiltrating, and storing precious stormwater. The plan proposes to better connect the basin to the surrounding communities and create clear internal non-vehicular circulation. While enhancing recreational and cultural programming. The plan reimagines the 2,000 acres as a rich, nature-based "Central Park" for the San Fernando Valley.

Experience this open space with guides from the Vision Plan team, including the City of LA and Design Leads. During the walkshop, you'll forget you are in the middle of one of the largest cities in the country and be enchanted by the potential for habitat and the river.

Landscape Infrastructure: Milton Street Park

Led by **George Kutnar**, SWA Group; **Sofia Aleman**, Mountains Recreation and Conservation Authority; and others

Join the team for an on-site workshop and walking tour of Milton Street Park, a transformative project along Ballona Creek that demonstrates how landscape architecture improves environmental performance and community well-being.

Once a fenced, under-utilized levee, the site has been reimagined as an inviting neighborhood park that connects residents to the creek corridor and provides a place of respite along the Ballona Creek Bike Path. Participants will tour the park's key features, including an amphitheater, gateway to the Ballona Creek Bike Path, native and drought-tolerant landscapes, and multi-functional gathering spaces designed for recreation, education, and everyday use.

The tour will highlight stormwater management systems that capture and infiltrate runoff from adjacent streets—reducing pollutants before they reach Ballona Creek and enhancing regional watershed health. These strategies showcase how small parks can provide measurable ecological benefits while enriching community access to open space.

The project team will share insights into how the project advances MRCA's long-term vision to connect Angelenos with their waterways and discuss design strategies that merge ecological performance with community needs. The workshop will reflect on the park's achievements and model for future projects along the creeks and rivers of Los Angeles.

This workshop offers participants a first-hand look at how design and stewardship can turn overlooked urban edges into resilient, inclusive, and inspiring public spaces.

The Resilient Campus: Historic Ecology and Water Conservation at UCLA
Led by Julia Prince, Associate, Design Workshop; Nurit Katz, Chief Sustainability Officer, UCLA and
Commissioner, Los Angeles Department of Water and Power; Peter Hendrickson, Associate Vice
Chancellor Design and Construction, UCLA Capital Programs; The Landscape and Grounds Team, UCLA
Facilities; Isaac Brown, Senior Scientist, Stillwater Sciences; and others

There is a perception in the U.S. of what a college campus should look like that is based on the Beaux-Arts-influenced, verdant campuses of the East Coast. Campuses also have a reputation as hubs for innovation that can lead revolutionary climate initiatives and catalyze cultural shifts through the manifestation of their built environments. The UCLA Landscape Framework Plan was tasked with reimagining the iconic campus landscape on the water-scarce West Coast.

Years of ecological and cultural influences shaped the campus and created classical landscapes representing a park-like setting that are not always appropriate for the local climate. Currently, much of the campus land is largely occupied by water-demanding turf and exotic species. Constrained by its fixed physical footprint, the campus also struggles to accommodate an increasing student population. The UCLA Landscape Framework Plan envisions the campus for years to come in the face of a growing population with evolving demographics needs, a desire to honor its ecology, historic landscapes and native cultures.

The UCLA Landscape Plan called upon an interdisciplinary team to engage the campus population and guide the transition of the campus toward a resilient future, delivering a 30-year vision with measurable outcomes. It targets 31.4 million gallons of irrigation water saving annually and an overall 65% reduction in turf areas.

Informed by historic ecology and traditional ecological knowledge, the Plan envisions an integrated landscape framework, encompassing three transformative ideas: landscape zones, environmental systems, and design and programming. It charts the course for UCLA to become a model for the next generation of campuses.

UCLA is a microcosm of the extensive environmental and social challenges faced by Los Angeles at large. Th City is positioned to be a pioneer in biodiversity and natural resource stewardship. The UCLA Landscape Framework Plan considers the campus as a laboratory for analyzing regional challenges, testing solutions, and implementing change.

This workshop will begin with a presentation and discussion with the project team followed by a tour of select campus landscapes.

The USC Inclusive Infrastructure Design Lab Field Session
Led by Alexander Robinson, University of Southern California School of Architecture, Landscape
Architecture + Urbanism Program, Inclusive Infrastructure Design Lab; and Brian Baldauf and Rebecca
Correa, Mountains Recreation and Conservation Authority

In this field session, participants will encounter a remarkable pairing: the Los Angeles River at full scale and a precisely engineered 60-foot-long, 1:120 hydraulic model, situated nearly side by side. This juxtaposition offers a unique perspective on how the river is studied, understood, and redesigned. Hosted by the USC Inclusive Infrastructure Design Lab, the visit reveals how engineers, landscape architects, artists, and community members collaborate to reimagine urban waterways for a climate-resilient future.

The session begins along the Glendale Narrows, grounding participants in the river's history, present conditions, and peculiar aesthetics. From there, participants move into the Lab, an active research and engagement space where advanced tools make it possible to rapidly develop hydraulically viable design ideas. The visit traces the evolution of river modeling in Los Angeles—from early analog techniques to today's hybrid approaches that integrate physical models, augmented reality (AR), and an ultra-fast numerical simulation. Custom AR tools allow participants to explore layered data and to annotate and comment directly on the model—bringing community voices, ideas, and concerns into the design process.

Participants will witness a simulation of a 100-year flood event (alongside others), underscoring the complexity of balancing flood control, ecosystem health, and community needs. They will also learn about the Los Angeles River Observatory, a platform for gathering and sharing real-time data to support nature-based design. The session will conclude with demonstrations of how the Lab is used not only for design and engineering, but also for cultural programming, including artist-led workshops. This immersive visit demonstrates a practice of inclusive, cross-disciplinary processes that can help create infrastructure that is adaptive, equitable, and deeply connected to its communities.

The Art of Disturbance: Moving Mountains in a Contaminated City on Fire
Led by Lauren Bon, Director, Metabolic Studio; Kelly Majewski and Diego Zapata, Metabolic Studio

In a city marked by extractive histories and climate change, soil tells a story of both injury and possibility. Urban soils, particularly in frontline communities, have been deeply impacted by the city's industrial legacy, and the 2025 LA Wildfires exacerbated this contamination crisis.

Lauren Bon and Metabolic Studio have spent the last decade examining this history on the LA River's industrial corridor. *Un-development 1*, a former tow yard, has been transformed using such bioremediation strategies as asphalt removal, phytoextraction, and soil building, and longitudinal measurements to demonstrate a significant reduction in lead concentrations.

We are now investigating persistent lead contamination across Los Angeles, using community-gathered soil samples from before and after the 2025 wildfires, and site-specific ash collected in the fires' aftermath.

A map visualizing this data will demonstrate the impact of legacy lead pollution while also tracking elevated post-fire contamination levels in burn areas and adjacent downstream zones.

We argue that natural disturbances—such as landslides, wildfires, and floods—can also be reframed as opportunities, addressing some of these inequities. Our project *Moving Mountains* sees Topanga Canyon landslide soil, once considered waste, as both a symbolic and literal substrate for healing. Rich in microbial and fungal life, this soil is being diverted to highly-contaminated urban sites, the first step in a holistic approach to community bioremediation.

As part of the USC symposium *Soak It Up*, this work will be presented as a mobile workshop at *Undevelopment 1* with Lauren Bon, Diego Zapata, and Kelly Majewski. By embracing disturbance, *Moving Mountains* redistributes ecological wealth—soil, water, and community—as a shared commons, and offers a new way to prepare for our future, not by rebuilding what was, but instead cultivating what resilience could be.

Lake Park and the Hidden Infrastructure of SoFi Stadium
Led by **Kush Parekh**, Principal, Studio-MLA, and **Mia Lehrer**, FASLA, President, Studio-MLA

SoFi Stadium and the 298-acre Hollywood Park development transform the site of the former Hollywood Park racetrack into a new civic landscape in the heart of Inglewood. Described as "revolutionary" by the Los Angeles Times, the project reflects the ambition of a visionary development team and a mayor who committed to the highest levels of sustainability. At its center is Lake Park, a six-acre body of water filled with reclaimed supply from the West Basin Municipal Water District. The lake is both a civic destination and a piece of working infrastructure. It captures, filters, and stores millions of gallons of stormwater, meeting the standards of Los Angeles County's Measure W Safe, Clean Water Program while also providing habitat and open space that remain accessible to the community when the stadium is not in use.

The workshop will explore how water resilience has been embedded into one of the most visible sports and entertainment venues in the world. Participants will learn how the dual water system supports local ecology, advances regional water goals, and creates civic identity within the larger Hollywood Park redevelopment. The site demonstrates how design and engineering can turn technical requirements into places that inspire, connect, and endure.

Led by the project's landscape architects from Studio-MLA, together with PACE Engineers and Hollywood Park, participants will begin at Lake Park, follow paths that reveal the stormwater treatment systems, and continue through the public gardens and stadium plaza. Along the way, the team will share how landscape and infrastructure come together to create a new civic realm for Los Angeles.